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We focus on an estimate of the decay exponent �m� in the initial period of decay of homogeneous isotropic
turbulence at low Taylor microscale Reynolds number R� ��20–50�. Lattice Boltzmann simulations in a
periodic box of 2563 points are performed and compared with measurements in grid turbulence at similar R�.
Good agreement is found between measured and calculated energy spectra. The exponent m is estimated in
three different ways: from the decay of the turbulent kinetic energy, the decay of the mean energy dissipation
rate, and the rate of growth of the Taylor microscale. Although all estimates are close, as prescribed by theory,
that from the Taylor microscale has the largest variability. It is then suggested that the virtual origin for the
decay rate be determined from the Taylor microscale, but the actual value of m be estimated from the decay
rate of the kinetic energy. The dependence of m on R��0� �the value of R� at the beginning of the simulation�
is also analyzed, using the present data as well as data from the literature. The results confirmed that m
approaches 1, as R��0� increases.
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I. INTRODUCTION

Homogeneous isotropic turbulence �HIT� has long been at
the core of turbulence research. Since the seminal work of
Rogallo �1�, direct numerical simulations of HIT have helped
to clarify, inter alia, the scaling properties of turbulence, the
effect of the Reynolds number �R��, and the behavior of the
velocity derivative skewness. At present, the highest-R� di-
rect numerical simulations �DNS’s� are performed in peri-
odic boxes for stationary conditions, achieved through a con-
tinuous injection of energy into the largest scales. DNS’s
have also been performed for temporally decaying homoge-
neous isotropic turbulence �DHIT�, where the turbulence de-
creases with time from an initial velocity distribution, in the
absence of kinetic energy production. It has been recently
suggested that some basic properties of turbulence may differ
between stationary and decaying conditions, even at the
same R� �2,3�. Further, it has been noticed �4,5� that, in pur-
suing ever higher values of R� and focusing on the smallest
scales, proper resolution of the largest scales may have been
overlooked. DHIT, although limited in the initial period of
the decay �where a power law is established� to lower values
of R� compared to stationary HIT, is potentially less affected
by this problem. DHIT is appealing because, compared to
shear flows, it avoids the complications related to a source of
turbulent energy, while the properties of homogeneity and
isotropy reduce sensibly the mathematical complexity of the
analysis.

The experimental analog of DHIT is grid turbulence—
e.g., �6,7�. In this case, the turbulence intensity decreases in
the streamwise direction, as the fluid moves with a constant
mean velocity away from the grid. In a frame of reference
moving with the mean velocity, turbulence decays in time
and is approximately homogeneous.

HIT has been typically studied with the computer using
finite-difference �e.g., �8�� or spectral methods �e.g., �1,9��.
In this paper, we investigate DHIT by solving the lattice
Boltzmann equation and we compare the results—including
the kinetic energy spectrum and the velocity derivative
skewness—to measurements we made in grid turbulence.
The values of R� and the Mach number are relatively low. In
the literature, there are a few simulations of HIT done with
the lattice Boltzmann method �LBM� �10–12�. This method
offers advantages in terms of parallelization of the algorithm
for high-performance computing �e.g., �11�� and avoids the
need of solving Poisson’s equation for the pressure.

The main focus, here, is on temporal profiles of turbulent
kinetic energy, its mean dissipation rate, and the Taylor mi-
croscale. Many studies have investigated the decay laws and
similarity in DHIT �6,13–20� because these two properties
allow useful generalizations in turbulence theory. In particu-
lar, Huang and Leonard �20� studied similarity and the
power-law decay of box turbulence at low Reynolds number,
5�R��50, using spectral DNS’s. They found that the ex-
ponent m for the kinetic energy decay q2� t−m �t is time�
falls in the range 1.25�m�1.5. They also reported on the
dependence of m on R�. In agreement with George �18�, they
showed that m→1 for increasing R�. In this work, we pro-
pose a refined procedure to obtain m in a reliable way. The
relationship between m and R� is of importance—for in-
stance, in modeling small-scale turbulence. A recent work
has addressed grid turbulence and its decay laws using LBM
simulations �21�.

II. NUMERICAL DETAILS AND INITIAL CONDITIONS

DHIT is simulated in a periodic box of 2563 points. The
Boltzmann equation is solved on a lattice for the discrete
velocity distribution

f��X + �xe�,t + �t� − f��X,t� = ��, � = 0,M ,

where f� is the particle distribution function, e� is the veloc-
ity along the �th direction, M is the population size, �� is the
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collision operator, X is the position vector, t is time, and �x
and �t are the lattice space and time steps. The single relax-
ation time approximation �Bhatnagar-Gross-Krook �BGK�
model �22�� for the collision operator has been used—i.e.,

�� = − ��f��X,t� − f�
eq�X,t�� ,

where f�
eq is the local equilibrium distribution and �−1 is the

relaxation time, related to the viscosity. The lattice has unit
lengths in time ��t�1� and space ��x�1�, also denoted as
lattice units �LU’s�. The mass density and momentum den-
sity are calculated as follows:

� = �
�

f��X,t� ,

�u = �
�

f��X,t�e�,

where u= �u1 ,u2 ,u3�. The kinematic viscosity is

	 = 	 2

�
− 1
1

6
,

and the initial density is set to 0.3 �hereafter, dimensional
quantities are expressed in LU’s�. In this work, a cubic lattice
with 15 links �d3q15 �23,24��, including 14 velocity vectors
and a rest state, is used. The speed of sound for d3q15 is
cs=�3/8.

The mean energy dissipation rate of the macroscopic ve-
locity fluctuation, ui, is defined as


 =
	

2
�	 �ui

�xj
+

�uj

�xi

2 �1�

�hereafter, unless otherwise stated, repeated indices imply
summation; angular brackets denote space averaging in
simulations and time averaging in experiments�. Assuming
isotropy, Eq. �1� reduces to


 = 15	�	 �ui

�xi

2 �2�

�no summation here�. The Taylor microscale and Taylor-
microscale Reynolds number are

� =
�u1

2�1/2

���u1/�x1�2�1/2 ,

R� =
�u1

2�1/2�

	
,

while the Kolmogorov scale is �=	3/4
−1/4. Note that both �
and R� are defined using only the component u1. The integral
length scale is

L�t� =
3�

4

�
0



k−1E�k,t�dk

�
0



E�k,t�dk

,

where E�k , t� is the three-dimensional �3D� energy spectrum.
The initial velocity field is prescribed by assuming the

following initial �i.e., t=0� 3D energy spectrum:

E�k,0� =
q2�0�

2

1

A

k�

kp
�+1 exp�−

�

2
	 k

kp

2� , �3�

where

q2�t� = �ui
2� = 2�

0



E�k,t�dk �4�

is twice the mean turbulent kinetic energy �8,9�. The value of
q2 is such that the Mach number is �1—i.e.,

M =
q

cs
� 0.03.

By using the condition �4�, the constant A is

A = �
0

 k�

kp
�+1 exp�−

�

2
	 k

kp

2�dk = �

0



k̃� exp�−
�

2
k̃2�dk̃ ,

where k̃=k /kp. The parameters � and kp fix the initial con-
ditions: the value of kp controls the location of the peak in
the initial energy spectrum, while � determines the slope of
the spectrum for k→0. The lower kp is, the higher the initial
value of R�—and consequently the higher R� is during the
decay. de Bruyn Kops and Riley �4� showed that if kp is too
small, such that Lkmin�0.3, the energy is removed too
quickly from the large scales. This may compromise the ini-
tial stage of the decay �5,20�. The maximum and minimum
wave numbers resolved in the present simulations are
k1 max=2� /2�x=� and k1 min=2� /N. The phase of the spec-
tral components is initialized by random numbers �see �25��.
This produces an initial velocity distribution which is Gauss-
ian �e.g., the velocity derivative skewness is zero�.

In the present study, we simulate two sets of initial con-
ditions �see Table I�: case A, for kp=9 and �=4 �which is the
same slope of the von Kármán spectrum—e.g., �26�� and
case B, for kp=3 and �=4. The latter achieves a larger R�,
comparable to values in our experiment. The simulations of
case B are comparable to those of Antonia and Orlandi �8�
and Mansour and Wray �9�, who used the same � and kp,
while studying decaying box turbulence at similar resolu-
tions �2403 and 2703 for �8� and 2563 for �9��. Hereafter,
length and velocity scales are made dimensionless with N

TABLE I. Main parameters for the LBM simulations of box turbulence.

Case � kp � tmax R��0� mq m� m
 L�0�kmin �k1 max t0

A 1.984 9 4 9.7 170 1.39 1.34 1.39 0.33 1.0 1.08

B 1.98 3 4 11.9 582 1.19 1.14 1.02 0.84 1.2 4.3
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and �q2�0� /2�1/2, respectively, while time scales are normal-
ized by N / �q2�0� /2�1/2, as in �8,9�.

To obtain the initial velocity field in physical space, the
inverse Fourier transform is applied to the energy spectrum
�3�. Although the resulting provisional field is, by construc-
tion, divergence free in wave-number space, it is not in
physical space. An iterative solution of Poisson’s equation
results in a solenoidal velocity field �see �25��, which can be
used to initialize the distribution function f� for the LBM
simulations. This procedure is different from that proposed
by �10�, where the initial distribution functions are calculated
iteratively from the inverse-transformed velocity compo-
nents, but without solving Poisson’s equation. If neither of
the two procedures is followed, strong pressure fluctuations
develop at the beginning of each simulation, eventually com-
promising the entire solution. A discussion regarding the ini-
tial pressure field in lattice Boltzmann simulations �of 2D
turbulence� can be found in �27�.

The code for the simulation has been parallelized with
MPICH2 to run on a Beowulf cluster of 16 dual-CPU PC’s.

III. EXPERIMENTAL DETAILS

A low-speed wind tunnel, with a working section of
350�350 mm2 and 2.4 m long, is used. Grids and a honey-
comb section are located in the plenum chamber to homog-
enize and straighten the flow. A biplane square mesh grid,
made up of 4.76�4.76 mm2 square rods of solidity 0.35 and
mesh size M =24.8 mm, is placed downstream of the primary
contraction �having an area ratio of 9:1� at the beginning of
the working section �which is the origin of the x axis in the
streamwise direction�. A secondary, axisymmetric contrac-
tion �area ratio 1.36� is placed after the grid, in order to
improve the isotropy of the flow. The ratio �u1

2� / �u2
2� is about

1.05, instead of 1.17 without the contraction �28� �u1 is the
component along the streamwise direction�. More details on
the experimental setup can be found in �29�. Measurements
are made on the centerline of the working section at
x=40M from the grid, where the turbulence is nearly homo-
geneous and isotropic, according to the criteria outlined in
�17�. The mean freestream velocity U is about 6 ms−1.

The velocity calibration is performed in situ, after remov-
ing the grid. The reference velocity is measured with a Pitot-
static probe connected to a differential pressure transducer
�Furness FCO15, least count 0.024 mm H2O, full range
10 mm H2O�. The streamwise velocity is measured with a
single hot wire, operated with in-house constant temperature
anemometer �CTA� circuits. The hot wire is etched from Pt–
10% Rh to a diameter of dw=2.5 �m, and the active length
lw is chosen so as to have an aspect ratio lw /dw of nearly 200.
The CTA circuits are operated at an overheat ratio of 1.5,
with a cut off frequency of approximately 15 kHz. The an-
emometer signals are acquired by means of a 16-bit AD
board into a PC at a sampling rate of fs=8 kHz, with low-
pass analog filters at fs /2. Taylor’s hypothesis is used to
convert temporal variations into spatial variations—i.e.,
r1=U / t—and the wave number is defined as k1=2� /r1.

IV. RESULTS

A. Basic quantities

Isotropy at the large scales, quantified by I1=3�u1
2� /q2,

I2=3�u2
2� /q2, and I3=3�u3

2� /q2, is shown in Fig. 1, for A. The
values are within ±3% from 1, the perfectly isotropic case.
The oscillations are not systematic, and indeed they change
from one simulation to another, because the initial spectrum
contains a random component for the phase. The level of
large-scale isotropy achieved here is superior to that in grid
turbulence experiments without a secondary contraction
�30–32�, where I1 can exceed 1.2.

Figure 1 shows also the small-scale isotropy quantified by
I
= �
1+
2+
3� /3
, where the numerical subscript identifies
which velocity component has been used in evaluating Eq.
�2�. I
 is within ±2% from 1, for t�4. Therefore, both large
and small scales are isotropic, to a close approximation.

Figure 2 shows the temporal evolution of �2 for case A.

FIG. 1. Isotropy ratios for small and large scales, case A.
Solid line: I1=3�u1

2� /q2. Dashed line: I2=3�u2
2� /q2. Dotted line:

I3=3�u3
2� /q2. Dot-dashed line: I
= �
1+
2+
3� /3
.

FIG. 2. Profiles of several quantities during the decay, case A.
Dotted line: R�. Dashed line: velocity derivative skewness. Solid
line: Taylor microscale. Dot-dashed line: Kolmogorov scale. A
polynomial of order 9 �almost indistinguishable from the data� is
fitted to the values of �2.
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The initial period of decay is identified with the region where
�2 grows linearly—i.e., for t�4. The Kolmogorov scale �
�same figure� increases during the initial period of decay,
after having reached a minimum value of 0.3 at t�2.

The skewness of the velocity derivative,

Si � −
���ui/�xi�3�

���ui/�xi�2�3/2

�no summation implied here�, has a value typically close to
0.5 in HIT and approaches zero, as R�→0. This has been
shown experimentally by Tavoularis et al. �33�, and numeri-
cally by Mansour and Wray �9� and Herring and Kerr �34�.
S= �S1+S2+S3� /3 �see Fig. 2� is close to 0.5, for t�4, in
agreement with numerical �8,9� and experimental �35� data at
comparable R�. The region where S becomes nearly constant
corresponds closely to where �2 displays a linear growth—
i.e., the initial period of decay. The development of R� dur-
ing the simulation is also reported in Fig. 2: following an
initial rapid decay, R� decreases more slowly for t�4.

Figure 3 reports the profiles of �2, �, S, and R� for case B.
Although the values of R� are larger compared to case A, the
same qualitative observations still apply.

In DHIT, there is no turbulence production so that the
turbulent kinetic energy equation reduces to


 = −
1

2

d

dt
q2. �5�

Figure 4 shows 
 calculated from its definition �Eq. �1�� and
from dq2 /dt, Eq. �5�. The agreement indicates that the
present simulation resolves adequately both large and small
scales.

Finally, the values of the normalized energy dissipation
rate

C
 =

L

�u1
2�3/2

are shown in Fig. 5. C
 has been reported extensively in the
literature, for both decaying and forced �i.e., stationary� box
turbulence. It is widely accepted that C
 achieves a constant

value near 0.5, for large R�, ��100� �36–38�, implying that 

becomes independent of the viscosity, a fundamental as-
sumption of Kolmogorov’s theory �39,40�. In our simula-
tions, R� is quite small so that C
 is larger than 0.5: for
R��24,C
�1.26 and, for R��44,C
�0.71. These values
follow the same trend of previously published data �see Fig.
5 which includes data from �41��.

It is interesting to compare simulations and measurements
in grid turbulence at similar values of R�. The numerical data
refer to case B, which achieves larger values of R�, close to
the experimental ones. The 1D energy spectrum of u1,
E11�k1�, is given in Fig. 6—after normalizing k1 by � and
multiplying E11�k1� by k1

5/3. This representation would high-
light the presence of the inertial range. However, the small
value of R� ��49� makes such range almost nonexistent. The
exponential region of the spectrum, for k1��0.2, corre-
sponds to the dissipative range �e.g., �42��. Numerical and
experimental distributions are remarkably similar. The agree-
ment is particularly significant because no special care has
been taken here, as compared to �4�, in matching the initial
spectrum in the simulation to that of the experiments, and
also because the criterion for the large-scale resolution �4� is

FIG. 3. Profiles of several quantities during the decay, case B.
Dotted line: R�. Dashed line: velocity derivative skewness. Solid
line: Taylor microscale. Dot-dashed line: Kolmogorov scale.

FIG. 4. Profile of the mean energy dissipation rate during the
decay, case A. Solid line: from the definition Eq. �1�. Dashed line:
estimated from q2 via Eq. �5�.

FIG. 5. Distribution of C
 as a function of R� for different nu-
merical simulations of decaying and forced homogeneous isotropic
turbulence �adapted from �41��. ��� Jimenez et al. �45�, ��, ��
Wang et al. �46�, ��� Yeung and Zhou �47�, ��� Cao et al. �48�,
and ��� present.
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not strictly verified. The grid turbulence data of Comte-
Bellot and Corrsin �43� at R��49 are also included in the
same figure, providing further support for the present results.
The inset in Fig. 6 shows the profile of S1: experimental and
numerical values are again very close, at comparable R�.

B. Power-law decays

The decay law of the kinetic energy in DHIT has been
studied extensively. Its importance is related, among other
things, to closure schemes, such as the k-
 model �44,9�. It is
commonly accepted that, in DHIT, the turbulent kinetic en-
ergy decays as a power law—i.e.,

q2 = A�t − t0�−m, �6�

where A is the decay constant, t0 the virtual origin, and m the
decay exponent. These three parameters are usually assumed
to be constant along the decay. Batchelor and Townsend �14�,
who studied decaying grid turbulence, reported a value of 1
for m. Subsequently, values consistently larger than 1 have
been found. At present, the range 1.15�m�1.45 is deemed
plausible �e.g., �26��. Equation �5� can be combined with Eq.
�6� to yield


 =
1

2
Am�t − t0�−m−1. �7�

From the definition of �, it follows that

�2 =
15	�u1

2�



=
10	

m
�t − t0� , �8�

which is linear in �t− t0�. Therefore, differentiating �2 with
respect to t eliminates the dependence on t0 and yields

m = 10	/�d�2/dt� . �9�

The exponent m can thus be estimated via Eq. �6�, �7�, or �9�,
and all three should give the same result, provided Eq. �6� is

valid. Nonetheless, Eq. �9� has the advantage of not contain-
ing t0, which can be estimated afterwards from

t0 = t −
m

10	
�2, �10�

once m is known. �Conversely, without assuming Eq. �6�, if
the velocity structure functions of order 2 and 3 satisfy simi-
larity when normalized by � and q2, it can be shown that q2

decays as a power law �19�.�
To investigate possible differences in the estimates of m

from Eq. �6�, �7�, or �9�, we now use different subscripts to
distinguish between the different quantities on which these
estimates are based—viz.,

q2 = A�t − t0�−mq,


 = B�t − t0�−m
−1,

�2 =
10	

m�

�t − t0� .

Here, B is the decay constant for 
. The instantaneous values
of m are shown as a function of t in Fig. 7. �A polynomial of
order 9, almost indistinguishable from the original points
�see Fig. 2�, has been fitted to the values of �2 before taking
the derivative.� From the instantaneous values, means �de-
noted by an overbar� are calculated, by averaging over a time
interval �marked by vertical dashed lines in Figs. 7 and 8�
where the distributions are nearly constant. Figure 7 shows
that, for case A, m� is almost constant �m��1.47� for
5.5� t�9.5. In the same interval, t0 estimated from m� via
Eq. �10� is also nearly constant �t0�1.08�. The oscillations
in t0 are due to the deviation from linearity of �2. With t0
determined, the instantaneous decay exponents from the ki-
netic energy, mq, and from the dissipation, m
, can be esti-
mated via Eqs. �6� and �7�, Fig. 7. Although m
, mq, and m�

are nearly equal �see Table I�, m� displays larger oscillations,

FIG. 6. Spectrum of u1 normalized by Kolmorogov scales and
compensated by �k1��5/3. Solid line: grid turbulence, R�=49,
present experiment �the original spectrum has been smoothed using
a moving average of 20 points�. ��� box turbulence �case B,
t=10.4�, R�=49; ��� grid turbulence, R�=48.6, from �43�. Inset:
velocity derivative skewness: ��� box turbulence, ��� grid
turbulence.

FIG. 7. �Color online� Decay exponents estimated from different
quantities �case A: see Table I. Dashed line: m�. Dotted line: mq.
Dot-dashed line: m
. Solid line: t0. Vertical dashed lines indicate the
time interval over which the averaged values of t0 and m are
calculated.
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compared to m
 and mq. These oscillations are not systematic
but change from one simulation to another: a second simu-
lation �not shown here� with the same initial power spec-
trum, but different random numbers defining the phase, gave
similar mean values. Case B at higher R� confirmed the ac-
curacy of the method for evaluating m. Profiles of the instan-
taneous decay exponents are shown in Fig. 8, while the nu-
merical values are listed in Table I. Compared to the lower-
R� simulation, the initial decay is established at later times
over the interval 10.1� t�11.8, the origin �t0=4.3� is larger,
and the decay exponent �mq=1.19� is smaller �see Table I�.
Similar oscillations in the values of m� were also reported by
Huang and Leonard �20� �their Fig. 8� for values of R� close
to the present ones. Further, as in our simulations, their dis-
tributions of q2 seem to follow more closely a power law
�their Fig. 2�, in relation to those of �2.

The scatter in m� can be shown to be inherent in the
definition of �. A small error �
, in the estimate of 
 from the
power law of q2, is reflected in a variation � of the decay
exponent of 
—viz.,

�
 =

*



=

�t − t0�−m
+�−1

�t − t0�−m
−1 = �t − t0�� �11�

�the asterisk denotes the estimate affected by the error�, or
m
* =mq−�. Consequently, the Taylor microscale is also af-
fected by �,

�*2 =
5	q2


* =
10	

mq
�t − t0�1−�.

Allowing for � does not mean that the energy equation �5� is
incorrect, but rather that Eq. �6� is only a first-order approxi-
mation. The derivative of �*2 is

d�*2

dt
=

10	

mq
�1 − ���t − t0�−�,

which can be used to evaluate the effect of � on m�
*—i.e.,

m�
*

m�

=
d�2

dt � d�*2

dt
=

�t − t0��

�1 − ��
. �12�

For case A, assuming �
 is 1.1 �i.e., an error of 10% in the
estimate of 
 from the power law of q2� in the initial period
of decay �t=5.5�, Eq. �11� yields �=0.0641. This is only an
error of about 4.6% for m
 but results in m�

* being 12% larger
than m�, according to Eq. �12�. Thus, even a small uncer-
tainty in m


* has a large effect on m�. Indeed, Figs. 7 and 8
show that m� has a larger variability, compared to m
 and
particularly mq. The usual practice of determining m via q2 in
experiments is hence justified, although it should be noted
that, in doing so, an initial guess for t0 is required. This can
be obtained from Eq. �10�, once an initial estimate for m� is
made.

Finally, we consider the dependence of m on R��0�, the
value of the Reynolds number at t=0. Figure 9 shows our
data, as well as data from other sources, and indicates that as
R��0� increases, m decreases. For some of the data in �20�,
there is a large difference between estimates based on �2 and
q2, thus raising some concern. This trend and the approach
towards 1 for m at large R��0� were also documented by
George �18� for grid turbulence �in �18�, the values of m
were plotted against R� in the initial period of the decay�,
although earlier Mohamed and LaRue �17�, who compiled
values of m from the literature, found that R� had no system-
atic effect on m. Arguably, in box turbulence, initial condi-
tions can be specified more precisely than in grid turbulence
so that a possible dependence on R��0� or R� can be dis-
cerned more easily.

V. CONCLUSIONS

Decaying homogeneous isotropic turbulence has been
studied in a periodic box by solving the Boltzmann equation

FIG. 8. �Color online� Decay exponents estimated from different
quantities �case B: see Table I�. Dashed line: m�. Dotted line: mq.
Dot-dashed line: m
; Solid line: t0. Vertical dashed lines indicate the
time interval over which the averaged values of t0 and m are
calculated.

FIG. 9. �Color online� Dependence of the decay exponent �esti-
mated from �2� on R��0�, the Reynolds number at the beginning of
the simulation. ��� present, ��� �8�, ��� �49�, and ��� �20�. ���
data from �20� estimated via the decay of q2. Vertical lines connect
values of m in �20� estimated from q2 to those estimated from �2

�where the two estimates coincide, an asterisk �*� appears instead�.
The smooth thick line through the data, which is represented by
1.05+60/R��0�, is drawn as a visual aid.
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on a lattice. The results are found to be consistent with simu-
lations made with different numerical schemes and with
measurements of grid turbulence. In particular, the turbulent
energy spectrum and the value of the velocity derivative
skewness in the initial period of decay are very close to those
measured in grid turbulence.

The power laws for the decay of the turbulent kinetic
energy, the decay of the mean energy dissipation rate, and
the growth rate of the Taylor microscale have been analysed.
Estimates of the decay exponent m obtained from these three
quantities are very close, as required by theory. However, the
power law for the turbulent kinetic energy is established first

and displays smaller oscillations, compared to the mean en-
ergy dissipation rate and the Taylor microscale �. The error
propagation associated with the definition of � explains the
larger uncertainty in m�. The present data, together with
other values available in the literature, suggest that m de-
creases towards 1, as R��0� increases.
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